

Review article

A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and

Environmental Controls Within the Community Dwelling Spinal Cord Injured TetraplegicPopulation

Sarah Atkins^{1, *}, Sally Fowler Davis²

¹Clinical Specialist Occupational Therapist (Dip COT SROT) Sheffield Teaching Hospitals NHS Foundation Trust

²Associate Professor Organization in Health and Care, Sheffield Hallam University and Sheffield Teaching Hospitals NHS Foundation Trust *Corresponding Author: Sally Fowler Davis, Associate Professor Organization in Health and Care, Sheffield Hallam University

Received date: 09 January 2021; Accepted date: 29 January 2021; Published date: 04 February 2021

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic Population. J Comm Med and Pub Health Rep 2(1): https://doi.org/10.38207/jcmphr20210002

Copyright: © **2021 Sarah Atkins**. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

People with tetraplegia are rightly expecting that digital technologies will allow them to compensate for an element of their personal impairment. Technologies can enable people to navigate environmental challenges, access on-line products and provide information about services. Occupational therapists (OT's) working with people who have spinal injuries need to be aware of digital devices and methods that cansupport their patients and facilitate the process of deploying technology, enabling the adoption by people in varying stages of their adaptation to disability. A rapid literature review was undertaken within an NIHR clinical academic internship: To gain a critical understanding of technology adoption in the practice of OT with people who have post-acute spinal injury. The study demonstrated a limited focus on the personalized deployment of 'smart' technologies. The Technology Adoption Model (TAM) was used to synthesize findings, based on the key principles that acceptance of technology is based on devices or methods that are a) unobtrusive, b) high performance, c) required little or no maintenance and d) where a device achieved practical restorative functional gains. Studies showed that setting up technologies for example, environmental control systems was a lengthy process that required a technical skill that was highly varied in the patient population. People disabled with spinal injuries who chose to adopt technology reported strong benefits associated with successful use yet had to overcome difficulties with learning, maintenance, and lack of technical support.

Keywords: environmental controls, spinal cord injury, digital technology, adoption of computer

Introduction

Digital Technologies Including

The personal computer, mobile telephones, tablets, and the internet are now embedded in the day-to-day living in the UK and other Organisation for Economic Co-operation and Development (OECD) countries. There is a recognition that the value to individuals is matched by economic benefits in terms of gross domestic product for connected countries [1]. Digital methods provide new methods of communication, control of everyday devices and play an increasingly essential role in work and leisure. They benefit the user by enabling them to undertake a range of daily activities, including study, and employment, and wider communication wherever there is a sufficient internet connection. The demand for 'smart' home-based digital technologies to enable activities of daily living is also being articulated by people with tetraplegia. Navigating a home; opening curtains, doors, regulating heating, and home devices are now within smart home technologies [2]. Vocational rehabilitation often depends on computing capabilities [3] with self-management invariably depending on social media, networking sites, and home-based internet [2]. OTs working within Spinal Injury Centres and N.H.S assistive technology teams, together with those working within charities such as Aspire, seek to provide rehabilitation to people who have been paralyzed by Spinal Cord Injury, helping them move from injury to independence. Aspire, who fund technology, volunteers, and assistive technologists to work within Spinal Cord Injury Centres, have debated the usefulness of mainstream smart home technologies for people with spinal cord injuries [4]. The technology debate includes concerns regarding compatibility, maintenance, and reliability of devices, particularly where the supply of equipment is dependent on internet connectivity. Risks are understood to be based on poor universal coverage, unreliable wi-fi and practitioner can be apprehensive about devices that fail, particularly in an emergency. At this time, the NHS environmental control provision criteria include traditional environmental control systems but do not include mainstream smart home technology [5]. This highlights the need for OTs to incorporate an understanding of digital technology adoption into their practice, to be able to advise on products and services, as part of treatment planning. This is based on a professional

ACQUAINT PUBLICATIONS

commitment to enable patients to engage in the occupations they value and overcome the barriers presented when they cannot access technology [6]. Use of assistive technology has long been used as a tool by occupational therapists to enable a return to daily occupations [7].

Assistive technology is defined as "any piece of equipment, or product, whether it is acquired commercially, modified or customized; that is used to increase maintain or improve the functional capabilities of individuals with disabilities"[8]. In 2013 The World Health Organisation (WHO) and International Spinal Cord Society Report [9], highlighted the value of allocating resources to enable people with Spinal Cord Injuries to access assistive technology. They advise that assistive technology is beneficial to maximize independence, including using Environmental Control Systems. These enable control over the immediate environment such as the T.V. computer, telephone lights, and doors. They advocate the use of computer technology to provide access to information on the internet, a method of communication, participation in education, work, and leisure. Also, they emphasize that assistive technology provides economic benefits to society by reducing the costs associated with care and unemployment. In addition to traditional

Digital Assistance Within Spinal Cord Injury

A previous systematic review reported on the use of computers and task performance at home for people without upper limb movement associated with tetraplegia **[11]**. They found that assistive technology devices such as voice command software, modified mice, switches, and typing sticks could be used to provide access to computers and controlling the home environment. The review concluded that people with spinal cord injury who used assistive technology for computer access believed that they had a better quality of life with improved participation, independence, and self-esteem. Some people with spinal cord injuries are interested in commercially available mainstream technology are becoming interested in the application of assistive technologies specifically designed for people with disabilities, global advances in technology have resulted in, commercially available methods of controlling the environment and accessing a computer, which does not require hand function and can be retrofitted to the home environment to enable independence and quality of life [2]. The mainstreaming of home-based digital controls depends on the assessment of the benefits of the on-line service or device, i.e., enhancing daily living providing additional control or functionality beyond the norm, or the additional vulnerability i.e., remotely monitoring utilities or reducing security risks. In some cases, the assessment includes personal preferences forsocial connectivity via remote communication methods and on-line networks. A major factor in the assessment is an individual's willingness to accept technology as part of their normal routine. The Technology Acceptance Model (TAM) is one of the few methods proposed as a useful predictor of technology acceptance. This behavioural model was developed in the 1980s to understand information technology use in the workplace. It states that the information technology user's acceptance is influenced by; their pre-use beliefs regarding perceived usefulness and ease of use, which leads to their attitude, intention to use, and actual use [10].

further digital services and devices; also expressing a level of frustration with traditional assistive technologies available through NHS provision,[12,13]. This stimulus contributed to the completion of this study, undertaken within a National Institute of Health Research (NIHR) Pre-Masters Clinical Academic Internship Programme [5].

The Review Question: What is influencing the acceptance and adoption of computer / digital technology and environmental controls within the community-dwelling spinal cord injured tetraplegic population?

Methodology

A rapid review methodology was selected and completed in six months of clinical academic development. Rapid reviews are an assessment of what is already known by using systematic review methods. This is accomplished by setting out a protocol to focus the question and set out the scope and limits of the search. The rapid review is rigorous and explicit and thus systematic but makes concessions to the breadth or depth of the process by limiting particular aspects of the systematic review process [14]. The study was devised using the PICOS tool. This was the most appropriate tool for a fully comprehensive search where time and resources are limited [15]. due to spinal cord injuries, using assistive technology; computers, and or environmental controls in the community who have used technology or rejected the use of technology. To capture the most recent evidence about advances in technology only literature from the last 6 years was included.

The PICOS Tool Was Used as Follows

The search aimed to identify literature about people with tetraplegia,

P = Population; tetraplegia, quadriplegia, and spinal cord injuries I = Intervention; assistive technology, computer, digital technology, smart technology, self -help device, the internet, environmental controls

C= Context; community-dwelling

O= Outcome; technology adoption, technology non-adoption, technology acceptance, technology non-acceptance.

S= Study type; all types of studies, published in peer-reviewed

sources including reported user experience within studies.

The search terms were, "tetraplegia", "quadriplegia", "spinal cord injury", "spinal cord injuries" and assistive technology. The connector "NOT" was used to exclude types of assistive technology specific to walking, mobility, standing, pressure ulcers, infertility, driving, showering, bathing, hygiene, and other conditions resulting in paralysis cerebral palsy, and stroke. Searches conducted to test additional terms; computer, smart technology, self-help device, internet, environmental controls did not produce additional references. To meet the criteria of "community-dwelling" the study participants needed to be no-longer in hospital. Studies conducted in a laboratory experimental environment were also excluded because this study seeks to explore what is accessible and practical for the individual living with spinal cord injury at home. A range of literature reporting on early-stage experimentation and design of new methods for controlling computers such as brain control interfaces, tongue operated assistive systems, vision-based interfaces, and body machine interfaces using inputs from jaw movements, shoulder motion, and facial position and expression were also excluded. These were not selected for review because the research did not relate to the community setting; views of people living with spinal cord injuries (adoption of technology) and the technologies when not available outside of the laboratory setting. The exception to this was a largescale survey that sought to assess the pre-use attitudes of the tetraplegic spinal cord injured population to technology that was included. Studies based on community-dwelling participants were easily separated from those based in hospitals. Studies excluded were

Results/Findings

Literature was selected if it met all the inclusion criteria and none of the exclusion criteria as summarised in the PRISMA flow diagram (**Figure 1**). 218 records were identified after duplicates were removed. After screening by title and abstract 85 articles were screened for eligibility. Full-text versions were obtained of all relevant articles and evaluated for inclusion according to the criteria. These were collated by the first author in a spreadsheet tabulating the relevance to the search protocol, this was reviewed by the second author. Six studies were agreed as suitable for inclusion. Data extraction was undertaken to identify the salient elements of the literature about the TAM- From the data extraction sheet, (**Table 1** also those not relating directly to adult spinal cord injury or tetraplegia, those technologies not directly enabling access to environmental controls and or computers, and those not published in English. Electronic searches used the following databases Scopus, IEEE, CINHAL complete, MEDLINE, PsycINFO, Google Scholar. Besides, an individual search of the British Journal of Occupational Therapy was carried out and some literature was sourced by word of mouth from health professional colleagues. The references of relevant articles found were searched for further relevant articles. A PROSPERO search was carried out on 02.12.18 and no registered relevant prospective studies were found. The study was not registered because as a rapid review it is accepted as a preliminary investigation. Ethics approval is not required for a literature review [16]. A Critical Appraisal Skills Programme Checklist was used with each article to ensure appropriateness and rigor for inclusion [17]. Articles were included where they provided valuable comments from users on the use and non-use of technology or on pre-use attitudes for communitydwelling participants. A data extraction sheet formulated by the first author used the headings; Population, Intervention, Context, Outcome, Study Type, Themes Identified by authors, funding, additional thoughts. Additional headings derived from the Technology Acceptance Model (TAM), discussed as useful were used for analysis. These were TAM perceived usefulness, TAM perceived use, TAM attitude, TAM intention to use/ acceptance, and actual use. The data extraction sheet and key findings were reviewed by the second author.

Therefore, the total number of participants from these studies was 29. Of these only five were women, although this is not unexpected within a spinal cord demographic. A higher proportion of men is thought to be representative of the UK Spinal Cord Injured Population [19]. The studies were carried out in Australia [3,2,18] and The Republic of Ireland [20,21]. They all had convenience or purposive samples. The numbers were not large enough to analyse according to each level of injury. The sixth study was a large survey, studying 156 participants with tetraplegia due to traumatic spinal cordinjury [3]. This sought to assess the pre-use attitudes of the spinal cordinjured population in the United States of America, using a range of

and Table 2) and subsequently, the key findings were identified. Due to small-scale studies with a qualitative design and only one large-scale survey, the level of evidence was not suitable for a meta-analysis. The five qualitative studies using interview methods had low numbers of participants; Folan et al. [3] had 3 community-dwelling participants, Hooper et al. had 5 participants [2], Myburg et al. had 15 participants [18]. In the first study by Verdonck, M. et al (2014) [19] there were six participants and then further analysis of five of those participants was reported in a further study published in 2018.

theoretically presented Brain Control Interfaces. The participants were 18- 81 years old. They had received C1- C7 injuries 40 % of which were complete. This data was subdivided into groups C1-4 with 54 participants, and C5 – C7 with 102 participants. All were stated to be due to traumatic causes with time since injury ranging from one month to 62 years. The proportion of males to females was not stated. The participants were recruited from the community, via advertisements using websites, paper adverts, and using forums, and support groups for people with spinal cord injuries. The large

numbers of participants and recruitment from several sources add weight to the relevance of the findings for the American population. But the data were presented as percentages without any statistical analysis to aid consideration of the level of bias.

The survey [3] sought to ascertain user attitudes towards eight technologies. There were 13 theoretical control opportunities including three relating to accuracy and speed of typing and two relating to control and accuracy of a computer cursor. The survey sought to assess the attitudes of the participants towards using technology to achieve benefits gave the burdens of each system, using a 5-point Likert scale, to rate the likelihood of use. The results of the survey [3] showed that respondents were concerned about the appearance of devices, issues with daily maintenance, and the potential requirement for technician intervention. For brain control interfaces to achieve widespread adoption they need to allow unobtrusive, high performance, autonomous use and require little or no maintenance. When rating the potential output control opportunities there was a preference for achieving restorative functional movements. However, a substantial 80 % of C1- C4 people with tetraplegia injured for 10 years or more were likely to adopt technology if it could naturally control a computer cursor. This figure was 56 % for those injured for 10 years or more in the C5-7 group. The study did not document the user's reasoning behind this difference between the higher-level and lower-level groups. A possible further study is needed to investigate the hypothesis that the C5-7 group, who have more upper limb function, can use other

devices already. Further framework analysis using the Technology Acceptance Model and themes identified by the authors [22], results are presented in (Table 2). In TAM perceived usefulness and perceived ease of use, feed into the users' attitudes towards technology. Within the literature analyzed participants saw technology as useful for completing tasks independently [23] with specific goals including controlling a mainstream mobile telephone or tablet [12], autonomous control of the home environment [18], and natural control of a computer cursor [3]. Participants pre-use ease of use expectations were that; for technology to be accepted, they wanted it to be fast, accurate, and natural [21]. Technologies that do not require maintenance or carer intervention and be unobtrusive are preferred [21]; however, the evidence was that in reality setting up environmental controls systems was lengthy, with technical issues and required reprogramming and that troubleshooting was required by someone with hand function and additional training was insufficient [18]. Assistive technology to access computers was found to be challenging and slow to use with participants' pre-injury level of knowledge of computers being variable. The users with less knowledge found learning harder [3]. In line with TAM theory, participants attitude to technology showed a clear interplay of usefulness and ease of use [2] describes "opportunities and costs" [18] described that the device, "has to pass a threshold of practicality over options such as asking a carer for help" [24] also described this as; "The interplay between hassle and engagement".

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

Figure 1: PRISMA 2009 Flow Diagram

Table-1

Reference	Population	Intervention	Context	Outcome	Study Type
Folan A,	Participant	Assistive technology for	Victorian Spinal	Participants.	Qualitative. Purposive
Barclay	numbers =7.	computers uses Dragon	CordService, Royal	- returned to previous	sampling.
L, Cooper	Traumatic Spinal	voice activation,trackball	TalbotRehabilitation	liferoles and developed	30 min semi-structured
C, Robinson M.	cordinjury.	mouse, finger splints, quad	Centre, Melbourne	meaningful new roles,	interviews (face to face
Exploring the	(C4-C5	joy, mouse grid.	Australia.	through the use of AT	or by telephone,
experienceof	Tetr			forcomputer use.	transcribed, analyzed for
clients	aplegiaASIA A or			had an increased sense	themes (inductive
with	B)		All participants	of control over their	process). Transcript and
tetraplegia	Adult males 20-60		studiedwere	lives enhanced self-	theme checking with the
utilizing	years.6-48 months		assistive	efficacy and quality of	participants.
assistive	post-injury.Range		technology users,	life. Further research	
technology for	of level of		non- users were not	should include a study	
computer	education from		studied.	into non- use.	
access,	left school Y9 -				
Disability	tertiary degree. 4				
Rehabilitation,	inpatients. 3				
Assistive	community-				
Technology 2015	dwelling.				
Jan 2	_				
10(1): 46-52.					
Hooper B,	Participant	Housemate smart device	Existing	Participants report the	Qualitative, purposive
Verdonck M,	numbers =5. All	environmental controls.	us	ability to access	sampling.semi-
Amsters D,	had a Spinal Cord	Access via tablet or	er'sexperiences with	mainstream smart	structured interviews in
Myburg M, Allan	Injury. Level of	smartphone with direct	smart device	devicefunctions,	participants' own homes.
E. Smart-device	injury;Tetraplegia	touch (the two C4 AIS B)	environmentalcontrol	increasingtheir,	Inductive thematic
environmental	C3 AIS B,2x C4	or Sip/puff or combined sip	systems.	independence, choice,	analysis.
controlsystems:	AIS B, C4 AIS C,	puff with chin control.	Queensland,	control, and	Reflexive journals and
experiences of	C5 AIS A,		Australia, use at	connection to family	field notes. Single
people with	Adult Males		home.	and the outside world.	embedded casestudy
cervical spinal	21yrs - 60,3 in		Purposive sample	Costs include money,	method.Phenomenology.
cord injuries.	their early 40's		from astate-wide	time, and technical	
Disability			rehabilitation service.	limitations causing	
			This study only looks	frustration.Prescribers	
andRehabilitation:			at existing users, not	should find ways to	
Assistive			non- adoption.	mitigate these costs.	
Technology. 2018				Users report a	
Nov				reduction in carer	
17;13(8):724-30.				burden because they	
				could call for help.	
Myburg M, Allan	Participant	Progress TM, and Control	People discharged	- The importance of	Qualitative inquiry.
E, Nalder E,	numbers =15.	4.	from the Princess	client readiness for the	15 semi-structured
Schuurs S,	12 male,3 female.	Device access methodvia;	AlexandraHospital	prescription.	interviews.
Amsters	Spinal cord	Direct access, sip and puff,	Spinal Injuries Unit,	client perceptions of	Conducted in the home
	injury	chin control, specs switch,	in Brisbane	value, convenience	environment or over the
D.	tetraplegia.	jellybean button, mouth-	Australia.	andaesthetics	telephone. Descriptive
Environmental	Level of injury;	stick,microlight.	All community-	influenceduse.	phenomenology.
controlsystems-	C2-C5AIS A-D.	All users had fully funded	dwellingparticipants	Prescribers should.	Purposive sampling.

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

Journal of Community Medicine and Public Health Reports **O** ISSN: 2692-9899

the experiences of	22-68 years.	ECS via a government or	had been prescribed	-seek to understand	Coded transcripts.
people with spinal	Educational level	insurance. Prescriptionby	an	whateach client needs	Field diaries.
cord injury and	not stated.	occupational therapy at the	environmental	to become engaged, be	Data management
theimplications for	Personal lifestyle	Queensland SpinalCord	control system.	proficient with use and	software was used.
prescribers.	(carer) support	Injuries Service.		knowledgeable about	
Disabilityand	hours 33-168hrs/			devices, prepare	
Rehabilitation:	week. Only 2			clientsfor difficulties,	
Assistive	living alone.			providesupport until	
Technology.	-			use isestablished.	
2017 Feb				Provide	
17;12(2):128-				follow-up and	
36.				evaluation.	
Verdonck M,	6 participants with	Environmental control	Participants;	ECS use was engaging	Qualitative.
Steggles E, Nolan	C3-C6 Spinal	system (ECS) starter pack.	_	enjoyable and fun.	Trial of a starter pack for
M, Chard G.	Cord Injury	A dynamic display infrared	Allcommunity-	Successful	8weeks.
Experiences of	Tetraplegia. Level	ECS controller(KEO),	dwelling 2	engagementinvolves	Semi-structured
using an	ofinjury	ability switches, mounts,	rural, 4 urbans.	overcoming hassle.	interviews
Environmental	completeness not	telephones, an infrared	One living in a	Some hassleresulted in	analyzed
Control System	stated.	electrical	nursing home. 5 lived	non- use. Butnon-use is	using Interpretive
(ECS) for persons	Inclusion	socket, sound operated	at home with family.	not a failure, ifbased on	Phenomenological
with high cervical	с	personal alarm.	All selected from a	experience and	Analysis. Heuristic
spinal cordinjury:	riteria-inability to	Supporting video and	database held by	informed	framework by Smith et
the interplay	use a standard	instruction	Spinal Injuries	choic	al.
between hassle	remote control	booklet. Control of-	Ireland.	e.Equipment trials are	Computer-assisted data
and engagement.	and inability to	televisions, DVDs		needed in early	analysis (CAQDAS).
Disabilityand	feed themselves.	telephones, lamps, and fans.		rehabilitation to	Thematic identification
Rehabilitation:	5 traumatic	Customized to their		establish habitual use.	using I Mind Map.
Assistive	injuries andone	preferences.		The experience of	
Technology. 2014	spinal	8week trial period.		carersand family	
Jan 1;9(1):70-8.	arteriovenous	A stand-alone system not		members warrants	
	malformation.	linked with smart devices.		further study. ECS	
	3-35 years post-			assessment and	
	discharge. No			provision should be	
	current access			seenas an essential part	
	to			of rehabilitation.	
	an				
	environmental				
	controlsystem.				
	Intelligiblespeech.				
	2 female,4 male.				
	22yrs-65yrs of				
	age.				
Verdonck M,	Further	As above.	Participants were.	ECS use enables	Qualitative.
Nolan M, Chard	a		All	people to do everyday	Trial of starter pack -
G. Taking back a	nalysis		commun	things, supports them	8weeks.
little of what you	/discussion of the		ity-dwelling,	to feel lessdependent.	5 participants
have lost: the	study above		One living in a	facilitates a sense of	semi-structured
meaning of using	[Verdonck M et		nursing home. 4 were	security, promotes	interviews
an Environmental	al. 2014] but only		living athome with	positive self-	analyzed
Control System	investigating the 5		family members. All	perception and	usingInterpretive
(ECS) for people	participants who		selected from a	continuity of being.	Phenomenological

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

with high cervical	chose to use the		database held by	Reclaiming a little	Analysis. Heuristic
spinal cord injury.	technology, not		Spinal Injuries	doing promotes	framework by Smith et
Disability and	the one participant		Ireland.	subjectively	al.
Rehabilitation:	who did not.			significant	Computer-assisted data
Assistive				improvements in	analysis (CAQDAS).
Technology. 2018				identity,	Thematic identificationI
Nov				relationships,	Mind Map.
17;13(8):785-90.				and well-being.	Further analysis of the 5
				"Feeling enabled" was	participants who chose
				enjoyable and	to use ECS in the
				empowering leading to	original study
				an increased sense of	[Verdonck, M et al
				safety and reduced	2014].
				neediness.	Fieldnotes. Reflexive
					journals.
Blabe CH, Gilja	The number of	Survey of userpreferences	Community-dwelling	For devices to be	A survey using a 5-point
V,Chestek CA,	participants=156.	for 8 Brain-machine	spinal cord	widelyadopted they	Likert scale to rate the
ShenoyKV,	Spinal cord	interfacetechnologies		need to be	likelihood of use.
Anderson KD,	injured	including	injured	autonomous,	
Henderson	tetraplegics.	electroencephalography	participants.	unobtrusive,	
	Ages, 18-81 years.	(EEG),Electrocorticography	Recruitedvia	requirelittle	
JM.Assessment of	Time post-injury 1	(ECoG), and intracortical	advertisements	or no maintenance, and	
brain- machine	month - 62 years.	microelectrode arrays,	onwebsites	offer	
interfaces from	Levels of injury	compared with an eye-	and in paperadverts	high	
the perspective of	ranged from C1 -	tracking system. Presented		performance. Most	
peoplewith	С7.	to the participants as	using	respondents wanted to	
paralysis. Journal	40 % complete	writtentheory and	SCI	restore natural	
ofneural	injuries.All	diagrams.13hypothetical	forums and	movement. 80 % of C1	
engineering.	injuries were due	opportunities to provide		-C4 participants	
2015Jul	to trauma. Results	function including typing,	support	injured for 10 years or	
14;12(4):043002.	weregrouped	controlling acomputer	groups.	more and 56% of all	
	according to the	cursor, a robot, a roboticarm,		C5-7 participants	
	level of injury;	awheelchair, or their arm.		10years pluspost-	
	C1-4 (54			injury; were likelyto	
	participants) and			adopt a technology if it	
	C5-C7 (102			could naturally control	
	participants).			a computer cursor.	

Table 2: Data Extraction TAM and themes

Reference	ТАМ	TAM Perceived ease	ТАМ	TAM Behavioural intention TAM Actual use		Themes and
	Perceived	of use	Attitude	to use Acceptance		conclusions
	Usefulness					identified by
						the authors.
Folan A,	Completing	Learning to use was	Participant's	Returning to life roles and	Difficulties were overcome	Getting back
Barclay L,	tasks	slow, challenging,	interest in	participation in meaningful	computer use became	into life
Cooper C,	independentl	and frustrating.	technology	occupations was a powerful	enjoyable.	Completion of
Robinson M.	y.		was	motivator.		tasks
Exploring the	-	The time needed to	dependent on		Users reported a sense of	independently.
experience of	Returning to	practice skills before	their	Making sense of their altered	control and empowerment.	Return to
clients with	life roles.	technology became	psychologica	condition. "I use them because	Ability to complete tasks	meaningful life
tetraplegia		useful enough to	l state.	I have to, not because I want	independently.	roles. Improved
utilizing	Experiencing	participate in	Participants	to "		opportunities to
assistive	normality.	occupations	referenced		Actual use: Facebook	return to
technology for		occupations.	having		school- work skype email	work Assisti
computer	Distraction	Level of previous	nrocessed		YouTube, online banking	ng in adjusting
	from injury	Level of previous	processed		work tasks, ordering supplies	to the injugu
access.	nom mjury.	use - some not	surfering and		work tasks, ordering supplies	to the injury.
Disability and		competent using	starting to		searching for products.	Overcoming
Rehabilitation:		computers preinjury.	move		Research medical and health	physical
Assistive			towards a		information.	barriers caused
Technology.			reformulated			by the injury.
2015 Jan			future.		Self-management-organizing	Making sense of
2;10(1):46-52.					their daily schedule.	the altered
						condition
					Return to work - one	caused by spinal
					participant placed a high	cord injury.
					value on the use of the	The technology
					computer AT because it	was a
					enabled employment -	distraction from
					making big money.	injury enabling
						an ability to
						look forwards to
						the future.
						Learning new
						skills.
						Can take a long
						time.
						Early
						introduction in
						rehabilitation is
						required.
						Is not limited by
						familiarity with
						computers.
						-

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

						Conclusions
						People with
						tetraplegia can
						be assisted to
						return to
						previous life
						roles or engage
						in new roles,
						through
						developing
						skills in the use
						of assistive
						technology for
						computer
						access. This
						ability led to an
						enhanced sense
						of self-efficacy
						and quality of
						life.
Reference	TAM	TAM Perceived ease	ТАМ	TAM Behavioural intention to	Actual use	Themes and
	Perceived	of use	Attitude	use Acceptance		conclusions
	Usefulness					identified by the
						authors.
Hooper B.	Participants	Hard to determine	Hard to	Difficulties regarding financial	The stated use.	Themes -
Verdonck M,	cited their	from the evidence	determine	cost.	Independent choice and	Opportunities
Amsters D.	desire to	presented.	from the	Learning to use was time-	control over aspects of their	and Costs.
Myburg M,	control a	All participants were	evidence	consuming.	environment.	Opportunities
Allan E. Smart-	mainstream	selected because they	presented.	Slow speed scanning through	Decreased reliance on others	were.
device	mobile	had accepted Smart	All	options or changing mode for	and increasing time spent	
environmental	phone or	ECS use.	participants	different options.	alone.	Independent
control	tablet as the		were selected	Installation frustration.	Peace of mind for the user	control, Choice,
systems:	main reason		because they	Lack of support and	and carer due to the ability to	Peace of mind,
experiences of	for obtaining		had accepted	information from prescribers.	call for help.	connection,
people with	a smart		Smart ECS	Technical limitations - battery	Ability to utilize the	effective
cervical spinal	device ECS.		use.	maintenance, poor blue tooth	resources of their paid carers'	resource use,
cord injuries.				connectivity, short infrared	time more effectively.	control over
Disability and				range.	The Smart device replaced	phone and apps.
Rehabilitation:				Compatibility issues with other	multiple devices being used	
Assistive				smart devices and appliances.	separately to achieve the	Costs were.
Technology.				Inability to use existing apple	same functions.	
2018 Nov 17;				phones/ tablets resulting in had	The advantages over a	Money, time
13(8): 724-30.				to purchase an android device.	traditional Environmental	investment, and
				Having to learn to use android	control system were, the	dealing with
				devices (phone) when they	ability to use a mobile device	technical
				previously apple devices.	to phone, message, use apps	limitations and
					including playing games,	resulting
					social media, internet.	frustration.
					Enabling more meaningful	

					connections with the outside	Conclusions
					world (family abroad).	
						Smart device
						environmental
						control systems
						offered a new
						opportunity for
						users to access
						mainstream
						smart device
						applications and
						functions.
						These facilitate
						connection to
						family and the
						outside world.
						outside worrd.
						Prescribers and
						installers must
						consider ways
						to mitigate the
						costs
						experienced by
						users.
						Future research
						should
						investigate
						methods and
						resources that
						practitioners
						could utilize to
						better support
						new users of
						smart device
						FCS
Deference	T A N I	TAM Derectived asso	T A N I	TAM Dehavioural intention to	A atual usa	Thomas and
Reference		f ANI Perceived ease		A secondaria antention to	Actual use	Themes and
		oruse	Attitude	use Acceptance		<u>conclusions</u>
	Usefulness					identified by the
						autnors
Myburg M,	Autonomy	The process of	Divided	Independence has positive	Items controlled by the	Readiness to
Allan E, Nalder	controlling	setting up the ECS	opinion on	psychological effects.	systems; Bed, air	engage with
E, Schuurs S,	the home	was lengthy - took	readiness	Less asking alleviates the sense	conditioning, lamp, wired	Environmental
Amsters D.	environment.	months.	/timing of	of being a pain to others.	light, fan ceiling & pedestal,	control systems
Environmental	For	Technical issues and	prescription.	Decreased frustration of asking	phone landline, TV, DVD,	Divided opinion
control	participants	reprogramming -		others improved wellbeing.	stereo, auto door, personal	on the correct
systems-the	to see their	only 4 participants	Users who	When the system was not	alarm. But most devices had	timing of
experiences of	device as	described the process	were	working it created feelings of	no access to computers/	prescription.
people with	useful, it had	as	prescribed an	uselessness and	internet tablets (they were	Perceptions of

Journal of Community Medicine and Public Health Reports discussion ISSN: 2692-9899

spinal cord	to pass a	smooth/straightforwa	environment	frustration.	traditional Environmental	<u>autonomy</u>
injury and the	perceived	rd.	al control	The environmental control	control systems) only one	Independence
implications	threshold of	For troubleshooting -	system well	system (ECS) was a critical	person was able to access a	has positive
for prescribers.	practicality	you need someone	before	enabler of spending time alone,	mobile phone via their	psychological
Disability and	over other	with a hand function.	discharge	especially at night.	device. Us	effects.
Rehabilitation:	options such		were unable	The goal to complete	eful for controlling	<u>Training</u>
Assistive	as asking a	User training was	to make	household tasks was not met by	entertainment devices -	Training is
Technology.	carer for	reliant on the	decisions	traditional ECS for this a	especially allowing them to	critical to the
2017 Feb	help.	knowledge of the	about what	mainstream device was needed	change their mind (music,	successful
17;12(2):128-		O.T. there were no	they wanted	to enable access to internet	TV).	adoption of the
36.		online forums or	before	email and computer	Some found ways to	ECS.
		technical support.	discharge -	functions. Utilizat	accomplish tasks in an easier,	Training is
			not ready to	ion was strongly influenced by	way than using their system	required for
			absorb	the amount of hassle involved	e.g., touch lamps.	occupational
			information,	in positioning and moving the	When it was set up to control	therapists,
			overwhelmed	device.	a safety device there was no	users, carers
			, not sure	Many participants asked others	contention as to its utility.	family, and
			what they	to use the device, especially the	Helped alleviate discomfort,	friends.
			wanted out	switch scanning users because	pain, and boredom	The utility of
			of anything.	it is slow.	(entertainment, and bed	the
			Where the	The dated and obtrusive	controls). Unreliability is	environmental
			process of	appearance of devices	cited as a reason for	control system
			prescription	reinforced feeling disabled.	abandonment in some cases.	The system
			was imposed	8		needs to work
			on them this			simply and
			caused			efficiently or it's
			frustration			more trouble
			disengageme			than it is worth.
			nt and for			Vulnerability -
			some			problems lead
			resigned			to a sudden loss
			acceptance			of
			acceptance.			independence
			Others			When it worked
			regretted a			well it reduced
			late start			stress and
			wanting the			frustration for
			ECS set up			users and
			and			carers
			functioning			Mainstream
			for discharge			technology
			to enable			looks better
			independence			than disability
			and sofety			technology and
			e and safety.			this minformer
						faoling
						diaghted
						uisabled.
						implications for
						prescribers.

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

						Prescribers
						should be
						knowledgeable,
						seek to
						understand what
						each client
						needs, prepare
						clients for
						potential
						difficulties in
						establishing
						reliable use and
						establish
						ongoing support
						mechanisms.
Reference	ТАМ	TAM Perceived ease	ТАМ	TAM Behavioural intention to	Actual use	Themes and
	Perceived	of use	Attitude	use Acceptance		conclusions
	Usefulness					identified by the
						authors
Verdonck M,	The user's	User's expectations	Dependency	Agreement to participate in the	Users described play-fullness	Two major
Steggles E,	expectations	of ease of use were	was tolerated	trial created an intention to use	for example, turning the	interlinked
Nolan M,	of the system	not gathered pre-	and disliked.	for the study.	lamp on just because.	themes;
Chard G.	pre-trial	trial. But there is	They	For the study environmental	Enjoying the surprise of	"Getting used to
Experiences of	were not	evidence of it being	experienced	controls (ECS) were only	others when they answer an	ECS" which
using an	explored.	easier to use than	difficulty	loaned for a trial period.	incoming phone call.	when achieved
Environmental	Participants	expected.	(described as	Participants were supported	Users found autonomy with	led to "Taking
Control System	were		hassle),	with applications post-trial. But	the controlling environment	back a little of
(ECS) for	contacted		changing	when assessed under the	led to altered roles. James's	what you have
persons with	and asked to		dependency	healthcare system, participants	parents were surprised by his	lost".
high cervical	try.		habits.	were frustrated about	ability to be alone. 5 out of 6	Getting used to
spinal cord	However,		Participants	negotiations regarding the ECS	participants stated the	ECS had two
injury: the	there was		described	being included as part of their	autonomy was worth the	sub-themes
interplay	some		frustration	care packages and delays.	hassle. The 6th Patrick had	entitled hassle
between hassle	evidence of		with the	One participant received her	limited goals of access to tv	and
and	usefulness		technology	prescribed ECS during the	channels and volume. His	engagement.
engagement.	exceeding		itself,	study. She had not seen it or	wife was always close and	Hassle had two
Disability and	their		technical	trialed its pre-installation but	quicker (injured 19 years).	elements
Rehabilitation:	expectations.		issues,	reported she was not	Users described the ECS as a	changing habits
Assistive	Participants		learning how	disappointed, she just wished	drug that gives pleasure and	and frustration.
Technology.	reported not		to use it, and	she had had it sooner (36 years	fosters dependency. They	The

2014 Jan	expecting the	taking too	post-injury). The delay had	feared living without it at the	engagement had
1;9(1):70-8.	technology	long.	been so long she had forgotten	end of the trial. Therefore,	3 elements good
	to be useful	Frustration	she had applied for one.	there is a transfer of	feeling, fun and
	or personally	with		dependency on a carer to a	humor, and
	relevant.	scanning as		machine. This study	surprise.
	ECS use was	an access		describes non -use in the	Conclusions
	not routinely	method.		form of Patrick as well as	People with
	trialed In	Frustration		use.	high cervical
	Ireland	with supply			spinal cord

before	i	issues		injuries find the
discharge	1	through the		environmental
from	1	healthcare		control system
rehabilitation	S	system.		used to be
	1	Attitude to		engaging
All	1	the		enjoyable and
participants	1	technology		fun.
had become	(changed		Successful
accustomed	1	positively for		engagement
to	1	those		with
dependency.]	participants		environmental
	1	that found it		control systems
	6	enabled them		involves
	1	to do more.		overcoming
	ן	Participants		"hassle".
	1	reported that		For some,
	i	it just looked		environmental
]	like part of		control systems
	1	their		may be too
		wheelchair,		much hassle
	1	not the		resulting in non-
	G	expected		use. However, it
	6	eyesore.		is important that
	ו	Users		non-use is not
	(compared the		necessarily
	1	trial pack		considered a
	,	with older		failure,
	S	static display		provided it is
	1	types and		based on real
	S	stated it was		experience and
	6	easier and		well-informed
	I	nice.		choice.
				Realistic trials
				need to be made
				available early
				in rehabilitation
				to establish
				environmental
				control use and
				avoid habitual

						dependency on
						carers.
Reference	ТАМ	TAM Perceived ease	ТАМ	TAM Behavioural intention to	Actual use	Themes and
	Perceived	of use	Attitude	use Acceptance		conclusions
	Usefulness					identified by the
						authors
Verdonck M,	As above	As above same study.	As above	As above same study.	Increased ability to make	Theme 1
Nolan M,	same study.		same study.	The participants were all	preferred, spontaneous	"Reclaiming a
Chard G.				accustomed to physical	choices. Being alone	little doing" -

Journal of Community Medicine and Public Health Reports O ISSN: 2692-9899

Taking back a		dependence on others and	provided space, "Just to have	this reflected
little of what		technology alone was not seen	my own space because I	pleasure in
you have lost:		as a safe substitute.	never have my own space"	being able to do
the meaning of		However, participants reported	(Matthew). ECS enabled	everyday things
using an		feeling "Less needy".	participants to relish privacy	again, enjoying
Environmental		They reported feeling less	once more.	one's own
Control System		frustrated, less annoyed, less of	Frustration was described	company, and
(ECS) for		a burden. Consequently, less	when the ECS needed	being less
people with		indebted to others and less	maintenance.	dependent.
high cervical		obliged to show constant	ECS enabled participants to	Theme 2
spinal cord		gratitude. Previously Bridget	enjoy their own space	"Feeling
injury.		would choose to do without to	because they felt safe. But all	Enabled"
Disability and		avoid putting the carer under	still needed a carer close by	Encompassed
Rehabilitation:		pressure.	they could call with the ECS	experiencing
Assistive			or by voice. It helped	pleasure in
Technology.			participants feel more	doing, feeling
2018 Nov			relaxed and reduced feelings	safe alone, and
17;13(8):785-			of vulnerability by providing	feeling less
90.			an ability to call for help	needy. Also
			quickly.	feeling good
				and feeling
				better about
				oneself. ECS
				enabled
				participants to
				enjoy their own
				space because
				they felt safe.
				Conclusions
				While ECS use
				produces only a
				little objective
				change in
				activity levels,
				it subjectively
				means a lot to
				people with
				high-level
				injuries.
				ECS enables
				people to do
				every -day
				things as well as
				supporting them
				to feel less
				dependent and
				needy.
				Using ECS
				facilitates a

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

						sense of
						security. It
						helps promote
						positive self-
						perception and
						continuity of
						being.
						Those with high
						cervical spinal
						cord injury need
						to have access
						to ECS so they
						can enjoy the
						psychological
						and physical
						benefits.
Reference	TAM	TAM Perceived ease	TAM	TAM Behavioural intention to	Actual use	Themes and
	Perceived	of use	Attitude	use Acceptance		conclusions
	Usefulness					identified by the
						authors
Blabe CH,	A substantial	Perception of ease of	This	This cannot be ascertained	Actual use was not	Understanding
Gilja V,	number of	use was important	population	from the study, because the	investigated in this study.	the needs of the
Chestek CA,	participants	this included a	was	technology was only presented	Because the technology was	spinal cord
Shenoy KV,	were	requirement for lack	interested in	to the participants in theory.	not available for the	injured
Anderson KD,	interested in	of maintenance,	Brain-	The cost implications for each	participants to use.	population is of
Henderson JM.	brain-	unobtrusiveness, and	Machine	device were not discussed.		paramount
Assessment of	machine	lack of carer	Interfaces as			importance in
brain–machine	interfaces to	intervention.	a method of			the design of
interfaces from	provide	Participants	improving			brain-machine
the perspective	access to	responded that for	function.			devices.
of people with	technology,	technologies to be	The			
paralysis.	although	adopted they need to	appearance			Respondents
Journal of	they rated a	be fast accurate and	of the device			were concerned
neural	return of	natural.	had a large			about
engineering.	normal upper		influence on			appearance,
2015 Jul	limb		the			daily
14;12(4):04300	movement as		likelihood of			maintenance,
2.	the highest		technology			and the
	functional		adoption			potential need
	outcome		with 90%			for technical
	desired.		likely to			intervention.
	The group		adopt eye-			
	ot		tracking			For brain
	participants		glasses rather			control systems
	injured more		than wearing			to achieve
	than 10 years		a wired			widespread
	expressed		device to the			adoption they
	the most		head, a cap,			need to be
	interest in		or having a			autonomous,

using Brain-	brain			unobtrusive,
Machine	implant.			and require little
Interfaces to	Surgically			or no
control a	implanted			maintenance.
computer	wired			They must
cursor.	devices were			provide high
- for	twice as			performance.
respondents	likely to be			
with levels	adopted than			In terms of
C1-4 80%	their wired			output, there is
were	externally			a preference for
interested	worn			restoring natural
-respondents	equivalents.			movement.
with levels				There was a
C5-7 56%				substantial
were				number
interested.				interested in
				controlling a
				computer.
				There was an
				enthusiasm in
				the spinal cord
				injured
				population for
				further
				development of
				brain-machine
				interfaces.
		1	1	(

Participants Reported the Following Themes about Usefulness and Challenges to Ease of Use Usefulness

- The technology-enabled users achieve independence with everyday activities [3,2,18,24,21].
- A sense of safety by being able to call for help with environmental controls **[2,18,24,21]** and the resultant psychological benefit from being able to spend time alone **[2,21]**.
- Computer access enabled a return to previous life roles as well as new ones including work [3].
- Modern "Smart" environmental control use enables telephone, messaging, social media, and computer access allowing valued access to the outside world [2].
- Users preferred mainstream devices because they look less disabled **[18]**.
- Assistive technology use was enjoyable [3,24,21] and helped alleviate discomfort, pain, and boredom [18].
- Environmental control users felt less of a burden to their carers
- Assistive technology users found learning time-consuming and frustrating [3,2,24,21].
- Frustration with technical issues and maintenance [2,18,24,21].
- Lack of technical support [2,18]
- Poor prescriber knowledge [2]

[18,21].

Challenges to Ease of Use

- Due to a psychological response to injury and trauma, the introduction of technology as an inpatient was too soon for some participants [3,18].
- Where technology was introduced long after hospital discharge participants were used to dependency and the changing habit was a hassle **[24]**.
- Difficulty with ease of use. Switch scanning is slow [18].

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

• Dated and obtrusive the appearance of devices reinforced feeling disabled **[18]**.

TAM outlines that attitude becomes 'intention to use' and 'actual use' [10]. In all of the studies where participants used the technology participants chose to accept and use the devices trialed, with the exception of one participant in Verdonck et al. 2014 [18]. He is described as having expressed only one goal of being able to change

television channels. It is reported that his wife was always nearer and quicker! But also, he had the technology introduced 19 years postinjury by which time he had developed dependency which was perhaps difficult to change.

Discussion

This study sought to identify the international literature related to technology adoption in people with a severe and enduring disability who may want and need to regain an element of control of their environment following impairment. The complex nature of technology adoption across different healthcare systems is an important topic for OTs working with clients who are accommodating to disability **[25]**. This includes the assessment of the acceptability of digital services and devices and the range of purpose and uses for people with spinal injury, across the world. It is also important to recognize that whilst some devices are tested in a research context, the application is dependent on access via purchase or procurement on the open market or through health provision. This study focuses on the latter, the adoption of technology outside the research environment. People with spinal injuries who chose to adopt technology reported strong benefits associated with successful use yet

This research draws in the experiences of successful assistive technology users, providing further information about the range of ways that a patient responds to digital devices in the community. The barriers to using or non-adoption are also highlighted but this evidence is limited by the fact that the majority of the studies [3,2,18,24,21] used purposive sampling and therefore may have reduced the number of patients who were non-adopters. The literature reviewed demonstrates that participants displayed a strong interest in technology to achieve autonomous computer access and control the environment. Including the view that mainstream technology was more desirable because its appearance was not additionally stigmatizing and normalized the user in society. This evidence is somewhat limited by small numbers of participants and purposive sampling [3,2,18,24,21]. Whilst impossible to generalize this result is important and reflects the potential of technology to enable full participation in community and a further degree of independence and self-management; profoundly changing the expectations of disabled living [26]. The survey [9], had large numbers of participants but Study participants placed value on their devices not only to achieve the expected independence goals but also to report psychological benefits from being able to be alone [2,21]. The qualitative studies showed a depth of evidence in some narrative accounts of people using devices including "freedom because if you can't get out of bed you can still talk to people' (Tom) and "It has allowed me to work had to overcome difficulties with learning, maintenance, and lack of technical support **[3,2,18,24,21]**. The focus of OT has generally been to assess individuals' functional needs and to match the technology to their requirements; what works well for them to achieve particular functional goals. This depends on the level of injury and the opportunities and limitations within the community/ home environment. An additional requirement with the emergence of mainstream digital services is to make the patient aware of the enabling methods and services that could supplement their care, providing that they are willing to accept technology-based solutions. This variation in the willingness and ability to use technology is an additional part of the assessment process as OTs codesign the home with the patient and enable the patient and their family to prioritize resources and become an expert in selecting the most appropriate technologies.

gauged their pre-use beliefs and needs only and did not include any statistical analysis. In 2018 a Parliamentary committee reviewed the use of mainstream technology versus traditional assistive technology to enable people with disabilities to return to work [27]. They found that assistive technology was a critical employment resource with benefits for the user and economy. They found that traditional assistive technology was outdated and recognized the value of mainstream technology. This adds weight to the need to investigate which mainstream technologies work well for which groups of users. The matching Person with Technology (MPT) model [28] is an alternative model that could be used to assess the needs of the user and apply these to technology selection. Significantly the MPT includes a perspective on the timing of the adoption which is not included in the Technology Acceptance Model [10]. For disabled people returning to employment, the TAM is useful because it relates specifically to computer technology that can be applied to all populations and applied within a rehabilitation context.

and allowed me to make money, and good money" (Jarred) [3]. Similarly, important, being alone is enabled by using a digital device to call for help if needed and highlights the importance of the ways that mainstream technologies need to be consistent and reliable, even in the context of potentially unreliable internet connections. The Technology Acceptance Model [10] applied to the literature was

found to be useful for highlighting how users' attitude to technology influences the likelihood of successful continued use of the equipment. The Needs Assessment Checklist is a recognized assessment tool and outcome measure for people with Spinal Cord Injuries [29]. This is used to structure rehabilitation to focus the team on providing a patient-centered goal-setting approach which is essential to facilitate good outcomes. The psychological response to injury and trauma often means that the introduction of assistive technology during inpatient assessment is too soon for some future

The timing of an assistive technology intervention has been usefully critiqued [22] who addressed the importance of adoption within a wider outcome's framework. This work recognized the importance of managing the expectations of the user in the delivery of assessment services and also the capability of the user in the planning for technology. It is highly relevant to this review that the conceptual framework for technology preparation and adoption is used in occupational therapy practice to improve person-centered outcomes [28]. The pervasiveness, complexity, and sophistication of technology are increasing at a phenomenal rate and while this growth is enabling technology to play a more prominent role in supporting people living with life-limiting conditions and their care partners in a wide variety of ways, it is more critical than ever to consider who chooses and advises on the adoption [29]. One of the models discussed in Gitlin's model (1998): Biopsychological framework and concept of career, as a person with disability [30]. It identifies a pathway of changing needs as the user progresses from novice as an inpatient through early user at home to experienced user and expert user. It highlights the different needs of the user at different stages and importantly the concept of a change in "environmental fit" at home. This concept of suitability for use in the environment is a users [3,18]. Furthermore, inpatient participants were not yet sure about perceived use due to injury-causing an altered state of being [3]. Yet for others, the introduction seemed to be too late with participants who had been at home for 3 - 35 years being used to dependency on carers. [24]. Further research is needed about the transference of dependency from carer to technology, as it becomes accessible talking about [29], Reports of participants benefitting from not being dependent on their careers, such as feeling less of a burden [18,21] and the benefit of being alone [2, 21] are significant here.

common theme throughout all the six models discussed by Lenker et al. [30]. The conclusion of this review was, "The lack of a fully realized predictive model for assistive technology outcomes research indicates the need for development and validation" [31]. A more recent review [17] reported that new conceptual models of assistive technology are under development and Scherer's Matching Person with the technology model (MPT) was the most mentioned. This has three guiding elements. Technology – its functions and characteristics, Social medium/environment, personal and psychosocial factors. The International Spinal Cord Society states that "without outcomes research in the area of assistive technology for people with spinal cord injury, it will be difficult to determine what works, how well it works and for whom it will work" [8]. Since there was no evidence found relating to the U.K. population there is a need for further research. There is a standard for classifying the neurological level and extent of spinal cord injury, The American Spinal Injury Association Impairment Scale (AIS A-E), (International Perspectives on Spinal Cord Injury page 30), this will enable future researchers to compare which technologies work best for each level of injury.

Strengths and Limitations

• The studies which explored actual technology use [3,2,18,24,21] had low numbers of participants, so it is not possible to draw conclusions about which technologies work well for each level of injury or any demographic group.

- Within the published literature there were no studies relating to participants within the United Kingdom.
- This study aimed to take a contemporary view and so the literature

excluded some literature relevant to the discussion relating to technology acceptance and adoption.

- Some critical factors have been explored that serve to promote the assessment, acceptance, and adoption of computer / digital technology and environmental controls.
- The study limited scope to those in the community seeking to use technologies and has not explored hospital-based technology use.

reviewed was limited to within the last 6 years. This may have

Conclusions

People with Spinal Cord Injuries are beginning to provide compelling testimonies of the benefits of assistive technology to access computers and control their environments. The literature associated with the adoption of digital assistive technology in the community is somewhat limited but practical aspects associated with individual need and capability are clear. New users need support, over a period of time, to enable them to benefit from the range of devices available. The role of the OT is to assess the user's capability and capacity by exploring their priorities for occupations and activities and to be sufficiently knowledgeable about the usefulness of the technology in

ACQUAINT PUBLICATIONS

the context/home environment. This study was an initial inquiry into evidence that could support OT practices and services within a UK Spinal Injury Unit and potentially inform how service users might engage with and adopt technology in their rehabilitation. The goal was to highlight the process of technology adoption when the person with Spinal Cord Injury is psychologically receptive and in the right supportive environment for them. There is a need to increase access to digital technologies to enable patients to express opinions and priorities for ways to overcome new impairments. Technology adoption has not so far been explored fully by Occupational Therapists and this study is important because it highlights the need

Conflict of interest: No other conflict of interest.

Key Findings

Technology adoption is an important factor in the assessment of the usefulness and benefits derived from digital devices and methods. People with Spinal Cord Injury experience barriers to using digital devices and further research is required to investigate which

References

- Welfens PJ, Perret JK (2014) Information & communication technology and true real GDP: economic analysis and findings for selected countries. International Economics and Economic Policy 11(1-2): 5-27.
- Hooper B, Verdonck M, Amsters D, Myburg M, Allan E (2018) Smart-device environmental control systems: experiences of people with cervical spinal cord injuries. Disabil Rehabil Assist Technol. 13(8): 724-730.
- Folan A, Barclay L, Cooper C, Robinson M. Exploring the experience of clients with tetraplegia utilizing assistive technology for computer access. Disabil Rehabil: Assist Technol, 10(1): 46-52. Aspire Spinal Injuries Charity (2019).
- 4. Aspire Spinal Injuries Charity (2019).
- 5. NHS England Service specifications Spinal Cord Injury (2019).
- Liu L (2018) Occupational therapy in the Fourth Industrial Revolution. Canadian Journal of Occupational Therapy 85(4): 272-283.
- Polgar JM (2006) Assistive technology as an enabler to occupation: What's old is new again. Canadian Journal of

for a radical approach to the knowledge, understanding, and capability of practitioners to advocate for people living with disabilities; to independently participate in a society where digital technology is increasingly becoming part of daily living. Technology has the potential to promote increased self-esteem and economic benefits such as employment. Further research is needed to investigate which technologies work well for people, according to the level of injury within the community environment. The review identifies a gap in studies that inform digital technology adoption by people with spinal cord injury and the best practice by rehabilitation practitioners in the U.K.

technologies work well for people, according to the level of injury, within the community environment.

What the Study Has Added

The review identifies a gap in studies that inform digital technology adoption by people with Spinal Cord Injury and the best practice by rehabilitation practitioners in the U.K.

- Baldassin, V, Shimizu HE, Fachin-Martins E (2018) Computer assistive technology and associations with quality of life for individuals with spinal cord injury: a systematic review. Qual Life Res 27(3): 597-607.
- Prospero National Injuries Unit, Osborn Building, Northern General Hospital, Herries Road, Sheffield. S5 7AU – Inpatient feedback.
- 13. NHS England Service specifications complex disability environmental controls (2018).
- 14. Grant MJ, Booth A (2009) A typology of reviews: an analysis of14 review types and associated methodologies. HealthInformation & Libraries Journal, 26(2): 91-108.
- 15. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S (2014) PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC health Serv Res. 14(1): 579.
- 16. Prospero National Institute for Health Research.
- 17. Critical Appraisal Skills Programme (CASP) part of Oxford
- Occupational Therapy 73(4): 199-204.
- 8. International Spinal Cord Society. International perspectives on spinal cord injury (2013).
- World Health Organization and International Spinal Cord Society (2013). International perspectives on spinal cord injury.
- 10. Holden RJ, Karsh BT (2010) The technology acceptance model: its past and its future in health care. J Biomed Inform 43(1): 159-172.
- Centre for Triple Value Healthcare (2019).
- 18. Myburg M, Allan E, Nalder E, Schuurs S, Amsters D (2017) Environmental control systems-the experiences of people with spinal cord injury and the implications for prescribers. Disability and Rehabilitation: Assist Technol. 12(2): 128-136.
 19. Verdonck M, Steggles E, Nolan M, Chard G (2014) Experiences
 - of using an Environmental Control System (ECS) for persons with high cervical spinal cord injury: the interplay between hassle and engagement. Disabil Rehabil Assist Technol 9(1): 70-78.

Journal of Community Medicine and Public Health Reports 🧿 ISSN: 2692-9899

- 20. Savic G, DeVivo MJ, Frankel HL, Jamous MA, Soni BM, et al. (2017) Long-term survival after traumatic spinal cord injury: a 70year British study. Spinal Cord 55(7): 651-658.
- 21. Blabe CH, Gilja V, Chestek CA, Shenoy KV, Anderson KD, et al. (2015) Assessment of brain–machine interfaces from the perspective of people with paralysis. J Neural Eng 12(4).
- 22. Fuhrer MJ, Jutai JW, Scherer MJ, DeRuyter F (2003) A framework for the conceptual modelling of assistive technology device outcomes. Disabil Rehabil 25(22): 1243-1251.
- 23. Verdonck M, Nolan M, Chard G (2018) Taking back a little of what you have lost: the meaning of using an Environmental Control System (ECS) for people with high cervical spinal cord injury. Disabil Rehabil Assist Technol 13(8): 785-790.
- 24. Verdonck MC, Ryan S (2008) 'Mainstream Technology as an Occupational Therapy Tool Technophobe or Technogeek?', British Journal of Occupational Therapy 71(6): 253–256.
- 25. Lewin D, Adshead S, Glennon B, Williamson B, Moore T, et al. (2010) Assisted living technologies for older and disabled people in 2030. A final report to Ofcom. London: Plum Consulting.

- 26. Department of Work and Pensions Committee, House of Commons (2018).
- Lenker JA, Paquet VL (2003) A review of conceptual models for assistive technology outcomes research and practice. Assist Technol. 15(1): 1-15.
- Kennedy P, Smithson E, Blakey L (2012) Planning and structuring spinal cord injury rehabilitation: the needs assessment checklist. Top spinal cord inj rehabil, 18(2): 135-137.
- 29. Lenker JA, Fuhrer MJ, Jutai JW, Demers L, Scherer MJ, et al. (2010) Treatment theory, intervention specification, and treatment fidelity in assistive technology outcomes research. Assist Technol 22(3): 129-138.
- 30. Boger J, Jutai J, Moorhead A, Mulvenna M, Bond R (2019) Ethical Issues in Technology for Dementia. In Using Technology in Dementia Care: A Guide to Technology Solutions for Everyday Living: 43-66.
- de Jesus Alves AC, Matsukura TS (2016) Theoretic models for recommendation and implementation of assistive technology. Cadernos de Terapia Ocupacional da UFS Car 24(3): 591-599.

Citation: Atkins S, Fowler Davis S. A Rapid Review of the Acceptance and Adoption of Computer / Digital Technology and Environmental Controls Within the Community Dwelling Spinal Cord Injured Tetraplegic

