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1. Introduction 

The human herpes simplex virus type 2 (HSV-2) is one of the most 

common viruses in humans, causing severe genital ulceration and is 

linked to HIV transmission [26]. HSV-2 is a large, double-stranded 

DNA (dsDNA) that is classified as a member of the subfamily Alpha 

Herpesviridae [35]. Intimate contact is the most prevalent mode of 

transmission; HSV-2 is primarily transmitted sexually. HSVs were 

primarily associated with orolabial ulceration in the past, but more 

recently, changes in the epidemiology of HSV-2 have been described, 

including an increase in genital infections [24]. There is a dearth of 

 
 

knowledge regarding the factors that influence virulence, particularly 

the significance of the genetic makeup of certain isolates and the 

absence of effective therapeutic agents, necessitating further 

investigation. Emphasise the need for proper treatment to limit the 

spread of the virus and slow the progression of the disease. 

Consequently, the majority of studies on HSV-2 have focused on 

treatment resistance, vaccine development, seroprevalence, and 

antiviral development [3,6,11,14,44]. 
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In addition to bone marrow, mesenchymal stem cells (MSCs) can be 

obtained from various adult tissues, including adipose tissue, 

amniotic fluid, dental pulp, placenta, umbilical cord blood, Wharton's 

jelly, as well as organs such as the brain, kidney, liver, lung, spleen, 

pancreas, and thymus [40]. MSCs have great potential as therapeutic 

agents for various human diseases [23,43]. This promise has not yet 

been fully realized because of the adverse reactions and effects of 

MCS-based therapy (MSCT), which include carcinogenesis, 

immunological rejection, and infection [17,20,41]. 

Human Wharton-jelly-derived mesenchymal stem cells (hWJ-MSCs) 

have recently attracted increased interest after in vivo transplantation 

due to their improved proliferation rate, immune-privileged 

properties, and decreased carcinogenic profile [18]. Despite the fact 

that hWJ-MSCs possess embryonic stem cell characteristics, they do 

not raise any ethical concerns. It is also possible to use the readily 

available umbilical cord (U.C.) to separate it. These advantages 

distinguish hWJ-MSCs from BMSCs and adipose tissue stem cells 

(ASCs) when comparing hWJ-MSCs to BMSCs and ASCs [4,13]. 

Stem cells can communicate with neighbouring tissue cells through a 

group of biologically active external secretions called the secretum, 

of which exosomes and large vesicles are the most important [25,29]. 

The capacity of MSCs to secrete vesicles (MSC-EVs) with critical 

biological functions has been reported in earlier research [7]. 

Numerous E.V.s with varying sizes, shapes, and contents are secreted 

by cells; these E.V.s interact with target cells to alter their phenotypes 

and functions [34]. To protect bioactive molecules from exposure and 

degradation in the extracellular environment and to enable their 

specialized transportation and targeting to target cells, extracellular 

vesicles are a crucial component of paracrine signalling [2]. 

Bioactive substances that control the phenotype, function, survival, 

and homing of immune cells, such as enzymes, cytokines, 

chemokines, immunomodulatory and growth factors, messenger 

RNA (mRNA), and microRNAs (miRNAs), are abundant in MSC- 

EVs. [16]. MSC-derived EVs, which are cell-free products, eliminate 

any safety concerns about the long-term survival of engrafted MSCs, 

such as their uncontrolled differentiation, malignant transformation, 

or rejection due to the activation of allogeneic immune responses in 

MHC-mismatched recipients [16]. Macrovesicles (100–1000 nm) and 

Exos (30–200nm) are nano-sized extracellular vehicles (E.V.s) 

derived from MSCs that are released into the extracellular milieu 

where they exert paracrine and endocrine effects [16]. The purpose of 

this study was to assess the antiviral potential of human Wharton- 

jelly-MSCs exosomes and macrovesicles (hWJ-MSCs- Exo) and 

(hWJ-MSCs- M.V.) against herpes simplex type -2 (HSV-2). 

 
2. Materials and Method 

2.1. Cells and Viruses 

In vitro examination of the antiviral effect of hWJ-MSC- Exo & L.V. 

on Vero (African green monkey kidney) cells. Cells were cultured in 

Dulbecco's modified Eagle's medium (DMEM) (Grand Island, NY, 

USA) containing 10% fetal bovine serum (FBS) (Grand Island, NY, 

USA) and 1% antibiotic-antimycotic (A.A.) mixture (GIBCO, 

Waltham, MA, USA) at 37 ºC in a humidified atmosphere containing 

5% CO2. Egyptian company Nawah-Scientific supplied human 

Herpes simplex virus type-2 and Vero cells. 

2.2. Collection and Processing of Human Umbilical 

Cords (hUCs) 

In our prior research,   we detailed the method and protocol used 

[18]. In summary, we obtained hUC samples (n=20) from the 

obstetrics and gynecology department at Al-Azhar University 

Hospital in Assiut. This study was approved by the ethics committees 

of the medical and scientific faculties at Al-Azhar University in 

Assiut (APPROVAL NUMBER/ID: 202015). Twenty healthy 

mothers were recruited after a full-term pregnancy, and hUCs were 

collected and transported to the lab in a sterile environment using 

phosphate-buffered saline (PBS) containing 100 U/mL penicillin and 

100µ g/mL streptomycin. 

After sterilizing the external surface of the U.C. with 70% ethanol, 

the cord was washed twice with phosphate-buffered saline (PBS) and 

serum-free DMEM (GIBCO, USA) to remove any remaining blood 

in the lab. The U.C. was severed longitudinally with sterile surgical 

scissors, and the Wharton's jelly (W.J.) was pulled from the cord with 

a scalpel. After the blood vessels from the cord were surgically 

removed (two arteries and one vein), the remaining cord tissue (C.T.) 

was collected. The W.J. and C.T. were each chopped into pieces 

measuring 1-2 mm, then incubated with the enzymatic mixture for 30 

minutes at 37 ºC in a 5% CO2 incubator. 

2.3. Culturing of hUC-Derived Mesenchymal Stem 

Cells (hUC-MSCs) 

Our previous report detailed the cultivation of human umbilical cord 

Mesenchymal Stem Cells (hUC-MSCs) [18]. Specifically, partially 

digested W.J. and C.T. pieces were each plated on a six-well plate of 

DMEM/F12 (GIBCO, Waltham, MA, USA) supplemented with 10% 

FBS and 1% A.A. solution. Plates were incubated at 37°C in an 

incubator with 5% CO2 and a temperature of 37 °C. After seven days 

in the culture medium, the hUC fragments were removed, and a new 

culture medium was added. Before passage, cells were grown to 80% 

confluence. If isolated cells can be cultured and maintained in good 

health until the fifth passage (P5) without contamination, the isolation 

is considered successful. Stem cells were cryopreserved in 10% 

DMSO-supplemented FBS. 

2.4. Flow Cytometry Characterization of hUC-MSCs 

hUC-MSC cells were detached using 0.25% Trypsin-EDTA and 

collected by centrifugation at 1000 x g for 10 min. Then, 106 hWJ- 

MSCs in 100 µL volume were stained with 10 µL of Pyridinium- 

chlorophyll-protein (Per-CP)-conjugated anti-CD105/Endoglin 

(Mouse IgG1; Clone 166707, R&D Systems, McKinley Place, MN, 

USA), Carboxy fluorescein (CFS)-conjugated-CD73 (Mouse IgG2B; 

Clone 606112, R&D Systems, McKinley Place, MN, USA), 
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allophycocyanin (APC) conjugated anti-CD90/Thy1 (Mouse IgG2A; 

Clone Thy-1A1, R&D Systems, McKinley Place, MN, USA), 

phycoerythrin (P.E.) conjugated anti-CD45 (Mouse IgG1; Clone 

2D1, R&D Systems, McKinley Place, MN, USA), and PE-CD34 

(Mouse IgG1; Clone QBEnd10, R&D Systems, McKinley Place, 

MN, USA) monoclonal antibodies for 30 min. The viability of cells 

was monitored using 7-amino actinomycin D (7-AAD) staining. A 

total of 50,000 events were acquired and analyzed using the FACS 

Cantor flow cytometer (Becton Dickinson Biosciences, Franklin 

Lakes, NJ, USA) and Kaluza analysis software 1.5a (Beckman 

Coulter, Brea, CA, USA). 

2.5. Collection of hWJ-MSC-S 

hWJ-MSCs were grown to 80% confluence in a complete growth 

medium before being transferred to a serum-free medium. After 48 

hours, Conditioned medium (CM) was harvested, centrifuged at 1000 

rpm for 10 minutes to remove cell residues, and stored at -80ºC for 

future use. 

2.6. Isolation of extracellular vesicles 

To obtain microvesicles and exosomes from secrtome, multiple steps 

of modified differential centrifugation were required. A low-speed 

spin (3000×g for 10 minutes) eliminated dead cells and apoptotic 

debris, while a spin at a higher speed (90,000×g for 45 minutes) 

eliminated microvesicles. The high-speed spin (150,000×g) 

precipitated exosomes in 90 minutes. (SORVALL MTX 150 micro- 

ultracentrifuge) It is stored (at -80°C for further characterization and 

analysis) [1,31]. 

2.7. Characterization by Transmission Electron 

Microscopy 

For transmission electron microscopy, isolated exosome and 

microvesicle pellets were treated overnight at 4°C with 2% 

glutaraldehyde in 0.1 M sodium cacodylate buffer. The fixed 

exosome pellet was rinsed in 0.15 M sodium cacodylate buffer (pH 

7.4), followed by a post-fixation rinse in 2% osmium tetroxide at 4°C. 

It was then stained with osmium tetroxide and uranyl acetate. The 

dyed pellet was cut into pieces that were then looked at with a JEM- 

100CX II 80 kV transmission electron microscope. The pictures were 

taken with a digital camera. 

2.8. Determination of Viral Inhibitory Concentration 50 

(IC50) and Cytotoxicity (CC50) Assay 

The CPE-inhibition assay was used to identify potential antivirals 

against Herpes simplex virus type 2 in humans. The dose-response 

assay was designed to determine the range of antiviral efficacy, i.e., 

the 50% inhibitory concentration (IC50) and the range of cytotoxicity 

(CC50). This test is essential for determining antiviral effectiveness 

in cell culture systems. Using the recently reported cytopathic (CPE) 

inhibition effect, antiviral activity and cytotoxicity assays were 

evaluated using the Crystal violet method. A day before infection, 

vero cell cells were seeded at a density of 2x10000 cells/well in a 96-

well culture plate. The following day, the culture medium was 

removed, and the cells were washed with phosphate-buffered saline. 

The infectivity of HSV-2 was determined utilizing the crystal violet 

method, which monitored CPE and allowed for the calculation of the 

percentage of viable cells. Mammalian cells received 0.1 mL of diluted 

virus suspension of human herpes virus type 2 containing CCID50 (1.0 

* 10000) of virus stock. This dose was determined to produce the 

desired CPEs 3 days after infection. At the onset of the disease, 0.01 

mL of medium containing the desired compound concentration was 

added to the cells for compound treatments. The antiviral activity of 

each test sample was determined using a concentration range of 0.1-

100 g/ml. The virus and cell controls. Plates of culture were incubated 

at 37 °C and 5% CO2 for 96 hours. The progression of the cytopathic 

effect was observed using light microscopy. The cell monolayers were 

fixed and stained with a 0.03% crystal violet solution in 2% ethanol and 

10% formalin following a PBS wash. The optical density of individual 

wells was measured spectrophotometrically at 570/630 nm after 

washing and drying. 

Antiviral activity = (mean optical density of cell controls minus mean 

optical density of virus controls) / (optical density of test minus mean 

optical density of virus controls) ×100%. Based on these findings, the 

50% CPE inhibitory dose (IC50) was determined. Before this assay, 

the cytotoxicity was evaluated; 2x104 cells/well were seeded in a 96- 

well culture plate. The following day, the culture medium containing 

serially diluted samples was added to the cells, which were then 

incubated for 72 hours before the culture medium was removed and 

the cells were washed with PBS. The subsequent steps were 

performed the same manner described previously for the antiviral 

activity test. Using GraphPad PRISM software (Graph-Pad Software, 

San Diego, USA), the 50% cytotoxic concentrations (CC50) and 50% 

inhibitory concentrations (IC50) were calculated [1]. 

2.9. Determination of the Mode of Action 

As previously described, the mode of antiviral activity of test 

compounds was determined by evaluating their virucidal, anti- 

adsorption, and anti-replication effects in Vero cells [12,42]. To 

evaluate virucidal activity, 200 µL (1000 PFU) of the virus was 

combined with various non-toxic concentrations of hWJ-MSC-S and 

incubated at RT for 1 h before infecting the cell monolayer for 1 h at 

37ºC. To determine the anti-adsorption effect, the cell monolayer was 

pre-treated for 2 h at 4 ºC with varying concentrations of hWJ- MSC-

S before infection for 1 h at 37°C with 200 µL (1000 PFU) of the virus. 

To determine the anti-replication effect, the cell monolayer was 

infected with 200 µL (1000 PFU) of the virus for 1 h at 37°C, 

followed by 1 h of treatment with hWJ-MSC-S. In all protocols, the 

supernatant was aspirated, cells were washed, and DMEM medium 

supplemented with 2% agarose, 1% A.A. mixture, and 4% BSA was 

used to incubate the cells at 37°C. After three days, the overlay medium 

was discarded, and the cells were fixed for one hour in 10% formalin 

solution and stained with 0.1% crystal violet working solution. The 

optical density of individual wells was measured 

spectrophotometrically at 570/630 nm after washing and drying. The 
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percentage of antiviral activity of the test compounds was calculated 

using the following equation: Antiviral activity = (mean optical 

density of cell controls minus mean optical density of virus controls) 

/ (optical density of test minus mean optical density of virus controls) 

100%. Based on these findings, the 50% CPE inhibitory dose (IC50) 

was determined. 

 

3. Results 

3.1. hUC-MSC Isolation and Characterization 

The isolation of hUC-MSCs was achieved in 75% (15 out of 20) of 

the obtained umbilical cords. Cells were successfully isolated via 

80% (12 out of 15) of the collected WJ samples and 40% (6 out of 15) 

of the collected CT samples. The isolation rate was notably higher in 

WJ compared to CT (Figure 1A). The isolated cells exhibited typical 

spindle-shaped stem cells with adherent properties, as shown in 

(Figure 1B). Furthermore, there were no discernible differences in cell 

morphology between stem cells derived from WJ and CT. The flow 

cytometry analysis conducted on the isolated UC-MSCs revealed 

positive expression of MSC markers CD73, CD105, and CD90, 

which is consistent with previous findings. Conversely, the 

hematopoietic stem cell markers CD45 and CD34 were found to be 

negative (Figure 1C), further supporting previous research [18]. 

 
 

Figure.1 A: 90 % confluence, and magnification was of 10x; B: Flow cytometry shows how hWJ-MSCs are characterised; C: A diagram shows the 

collection of WJ-MSCs Exv. 
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3.2 Antiviral Activity and Cytotoxicity of hWJ-MSC-S 

The study assessed the antiviral activity and cytotoxicity of hWJ- 

MSC-Extracellular Vesicles against HSV-2. Specifically, the focus of 

the study was on microvesicles and exosomes. The evaluation of these 

samples was conducted using the Vero cell line. It was determined 

the half-maximal inhibitory concentration (IC50), half-maximal 

cytotoxicity concentration (CC50), and selective index (SI) of hWJ- 

MSC-MV and hWJ-MSC-EX. To determine CC50, Vero cells were 

treated with varying concentrations of each fraction, and cytotoxicity 

levels were determined using the MTT assay. (Figure 2A&C) CC50 

value of hWJ-MSC-MV and hWJ-MSC-EX were 62.42 µg/ml and 

52.70 respectively against HSV-2), HSV-2 was individually treated 

with a variety of non-toxic concentrations of HWMSC-MV and hWJ- 

MSC-EX before being allowed to infect Vero cells in order to assess 

the antiviral effect of each sample. The antiviral activity of hWJ- 

MSC-extracellular vesicles was evaluated using a cytopathic effect 

assay. The IC50 values of hWJ-MSC-MV and hWJ-MSC-EX against 

HSV-2 were 14.49 and 6.234 µg/ml, respectively, as shown in 

(Figure 2B&D). In addition, the SI (CC50/IC50) of hWJ-MSC-MV 

and hWJ-MSC-EX against HSV-2 were 4.3 and 8.5, respectively 

(Table 1). The secreted factors of hWJ-MSCs effectively mitigated 

the cytopathic effect caused by HSV-2. There was a difference in the 

ability of hWJ-MSC-MV and hWJ-MSC-EX to inhibit the virus. The 

effectiveness of hWJ-MSC-MV and hWJ-MSC-EX in preventing the 

spread of HSV-2 was significantly reduced.

 

Figure 2. Antiviral activity and cytotoxicity of hWJ-MSC- extracellular vesicls, (A and C) Cytotoxicity concentration (CC50) of hWJ-MSC-S on 

Vero cells against HSV-2. Different concentrations of hWJ-MSC-S were applied to cells for 24 hours. The cytotoxicity levels were measured using 

an MTT assay. (B and D) Half-maximal inhibitory concentration (IC50) of hWJ-MSC-S against HSV-2 infection in Vero cells. 

 

The virus was incubated for one hour with varying concentrations of 

hWJ-MSC-extracellular vesicles before infection of Vero-E6 cells. In 

order to diminish the virus-induced cytopathic effect (CPE) by 50% 

relative to the virus control, the IC50 was determined to be the 

concentration of hWJ-MSC-extracellular vesicles necessary to 

achieve this reduction. Nonlinear regression analysis was employed 

to determine the IC50 and CC50 values through the plotting of log 

inhibitor versus normalized response (with a variable slope). The 

findings are presented as the means ± standard deviations of three 

separate experiments conducted in triplicate each. A p-value less than 

0.01 signifies a statistically significant correlation between the 

extracellular vesicles containing hWJ-MSC and the antiviral 

activities against HSV-2. 
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Table 1. Antiviral activity and cytotoxicity of hWJ-MSC- extracellular vesicles. 
 

Samples cell CC50 (µg/ml) IC50 (µg/ml) SI (CC50, IC50) 

hWJ-MSC-MV 

 
V

er
o

 

62.42 14.49 4.3 

hWJ-MSC-EX 52.70 6.234 8.5 

 

3.3. Determination of the Mode of Action of hWJ-MSC- 

extracellular vesicles 

The mode of action of hWJ-MSC- extracellular vesicles was 

elucidated by investigating its antiviral activity against HSV-2 

infection in Vero cells. This investigation employed three distinct 

antiviral protocols: (i) virucidal, (ii) inhibition of viral adsorption, and 

(iii) inhibition of viral replication, as depicted in Figure 3. The 

inhibitory effect of hWJ-MSC- extracellular vesicles on HSV-2 

infection was observed across all antiviral protocols. However, there 

was a notable variation in the degree of inhibition observed among 

different antiviral assays and concentrations of hWJ-MSC- 

extracellular vesicles (Figure 3). While all antiviral protocols 

indicated that hWJ-MSC-extracellular vesicles inhibited HSV-2 

infection, the percentage of inhibition varied considerably between 

 

antiviral assays and concentrations of hWJ-MSC-extracellular 

vesicles (Figure 3). 

In virucidal, anti-replication, and anti-adsorption protocols, as 

depicted in Figure 3. The virucidal, anti-replication, and anti- 

adsorption IC50 values of hWJ-MSC-MV against HSV-2 were 29.66, 

11.98, and 27.0 µg/ml, respectively. Moreover, the SI (CC50/IC50) of 

hWJ-MSC-S against HSV-2 was 2.1, 5.2, and 2.3 µg/ml, respectively, 

in virucidal, anti-replication, and anti-adsorption protocols.  whereas 

the virucidal, anti-replication, and anti-adsorption IC50 values of 

hWJ-MSC-EX against HSV-2 were 22.9, 5.3, and 29.3 g/ml, 

respectively. Moreover, the SI (CC50/IC50) of hWJ-MSC-S against 

HSV-2 was 2.3, 9.93, and 1.8 µg/ml, respectively. These findings 

suggested that hWJ-MSC-extracellular vesicles inhibited HSV-2 

infection directly by inactivating the virion and indirectly by 

preventing viral replication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Antiviral mechanism of hWJ-MSC-MV. (A, B and C) Virucidal, anti-adsorption, and anti-replication activities of hWJ-MSC-MV 

against HSV-2.  (D, E and F) Virucidal, anti-adsorption, and anti-replication activities of hWJ-MSC-EX against HSV-2. 
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2.7. Characterization by Transmission Electron 

microscopy 

Two different extracellular vesicles, exosome, and microvesicles 

producing human cell types, were used. We used exosomes and 

microvesicles isolated from a human umbilical cord stem cell. 

(Figure 4 A) shows the results of TEM. Exosomes had a spherical 

shape with a diameter of about 50–100 nm. The microvesicles have a 

diameter of 300-900 nm. Note the high difference between each 

vesicle in size and shape (Figure 4 B). 

 

Figure 4 A: Transmission electron microscopy (TEM) characterization of hWJ-MSC-MV and B: Transmission electron microscopy (TEM) 

characterization of hWJ-MSC-EX. 

 

Discussion 

Herpesviruses are highly infectious and lead to high mortality and 

morbidity rates in infected, immunocompromised people, particularly 

with human immunodeficiency virus (HIV) infection, are among the 

most common causes of diseases in humans. Moreover, herpesvirus 

infections can be extremely severe. 

They potentially lead to life-threatening diseases and chronic, 

persistent, and active infections [9,39]. In addition, the therapeutic 

options currently available for curing HSV have undergone 

modifications due to their highly complex infectious nature [37]. Yet, 

there is no cure that is both permanent and extraordinarily effective. 

Although contemporary antiviral therapies have the capacity to 

mitigate symptoms and restrict viral transmission to a specific extent, 

they are unable to completely eradicate the inherent HSV infection or 

latency outcomes [27]. At present, there is no approved vaccine against 

HSV infection; nevertheless, numerous vaccination candidates are 

undergoing research in preparation for the development of such a 

vaccine [19]. HSV-2 is the focus of most clinical efforts because of its 

more infectious consequences [38]. Therefore, the advancement of 

efficacious antiviral therapeutic strategies for herpes infections 

represents a pivotal stride in the management of herpes-related diseases. 

Cellular therapy with mesenchymal stem cells (MSCs) could be offered 

a new therapeutic approach due to their broad pharmacological effects, 

including anti-inflammatory immunomodulatory, regenerative, pro-

angiogenic, and anti-fibrotic properties. Stem cell exosomes and 

microvesicles are gaining  popularity as viable substitutes for stem 

cells in order to minimize their associated side effects. Leveraging 

extracellular vesicles derived from stem cells presents many benefits, 

encompassing enhanced safety and effectiveness, adaptability in 

storage and manipulation, and substantially heightened immune 

tolerance, among others. Therefore, we aimed in this study to analyze 

the antiviral activity of two samples from hWJ-MSC-S against herpes 

simplex type 2. A frequently used metric to suggest a treatment is the 

selectivity index, which is calculated as the ratio of the 50% cytotoxic 

concentration (CC50) to the 50% antiviral concentration (IC50). An 

extract or pure substance has been shown to be effective in vitro at 

blocking viral propagation while having no cytotoxic or cytostatic 

side effects. Different SI values have been suggested by studies to 

support a chemical or herbal extract for preclinical or in vitro research. 

Thus, we continued our investigations to define the potential mode of 

anti-herpes simplex type 2 to investigate specific steps of the mod of 

action at which the virus is inhibited. From the obtained antiviral result, 

we can observe that both tested samples are good candidates against 

herpes simplex type 2 in the replication step, which means samples 

inhibit the virus replication cycle inside cytoplasm by preventing 

polymerases or inhibiting capsid formation. 

The isolation of hUC-MSCs was achieved in 75% (15 out of 20) of 

the obtained umbilical cords. Cells were successfully isolated via 80% 

(12 out of 15) of the collected WJ samples and from 40% (6 out of 15) 



Journal of Community Medicine and Public Health Reports ISSN: 2692-9899 

 

8 
Citation: Al-Daim SA, Atta OM, Allayeh AK, Hussein HAM, Dawood MA, et al. (2024) Human Wharton-Jelly- Mesenchymal Stem Cells Microvesicles And Exosomes As Potential Antiviral Activity Against 

Herpes Simplex Type 2. J Comm Med and Pub Health Rep 5(04): https://doi.org/10.38207/JCMPHR/2024/MAR05040332 
 

of the collected CT samples. This was confirmed by the high growth 

and proliferation rates of WJ-MSC, which also demonstrated their 

therapeutic potential [18]. The hWJ-MSCs were characterized by the 

presence of CD105, CD146, and CD90 and the absence of CD45 and 

CD34 molecular markers. MSCs were defined by their multi- 

differentiation potency and expression of cell surface markers (CD105, 

CD73, and CD90) and lack of expression of (CD45, CD34, and CD14) 

[30,36]. The isolated WJ-MSC showed potential and corresponded 

well with the standard positive and negative phenotypic and molecular 

profile (CD44+, CD90+, CD 105+, and CD34-) [33]. 

The treatment with MSCs was improved disease-associated parameters 

in acute respiratory distress syndrome (ARDS) [10], as well as 

bronchopulmonary dysplasia, chronic obstructive pulmonary disease, 

pulmonary hypertension, and idiopathic pulmonary fibrosis (Mathew, 

2020). Paracrine factors were considered as a new approach in 

regenerative medicine and may be represented as a novel and feasible 

clinical application [8]. 

The cytotoxic and antiviral activities of hWJ-MSC-MV against HSV- 2 

were evaluated using the Vero cell line, and the CC50, IC50, and SI 

(CC50/IC50) values (µg/ml) were 62.42, 14.94, and 4.3, respectively. In 

the case of hWJ-MSC-EX, the CC50, IC50, and SI (CC50/IC50) values 

(µg/ml) were 52.70, 6.23, and 8.5 in a dose-dependent manner, which 

proved the safety and efficacy of stem cells secreted factor 

[15,21,45]. 

The virucidal, anti-replication, and anti-adsorption protocols of hWJ- 

MSC-MV and hWJ-MSC-EX against HSV-2 in Vero cells were 

assessed. The virucidal, anti-replication, and anti-adsorption IC50 

values of hWJ-MSC-MV against HSV-2 were 29.66, 11.98, and 27.0 

µg/ml, respectively. Moreover, the SI (CC50/IC50) of hWJ-MSC-S 

against HSV-2 was 2.1, 5.2, and 2.3 µg/ml, respectively, in virucidal, 

anti-replication, and anti-adsorption protocols (Table 2). whereas the 

virucidal, anti-replication, and anti-adsorption IC50 values of hWJ- 

MSC-EX against HSV-2 were 22.9, 5.3, and 29.3 µg/ml, respectively. 

Moreover, the SI (CC50/IC50) of hWJ-MSC-S against HSV-2 was 2.3, 

9.93, and 1.8 g/ml, respectively. 

Moreover, the veridical, anti-replication, and anti-adsorption 

mechanisms of hWJ-MSC-p against SARS-CoV-2 in Vero-E6 cells 

were assessed. At a concentration (1000 µg/ml), hWJ-MSC-p inhibited 

herpes type-2 infection by > 70 %, 50 %, and 80 % in virucidal, anti-

replication, and anti-adsorption mechanisms, respectively. This is due 

to the presence of a diverse array of molecules in hWJ-MSC-p, 

including paracrine molecules (including cytokines, growth factors, 

microRNAs (miRNAs), and exosomes and microvesicles)) that regulate 

their impact on various effector cells associated with innate and 

adaptive immunity [5,22,32]. MSC- derived extracellular vesicles 

(MSC-EVs) moderately suppressed HSV2 replication after treatment. 

 

Conclusions 

In this study, we have shown that hWJ-MSC-S extracellular vesicles 

exhibit antiviral efficacy against the medically significant HSV-2. In 

vitro, hWJ-MSC-EV quietly reduced HSV-2 infection. This work 

offers insight into novel hWJ-MSC-S-based antiviral treatments 

against infection. The transmission electron microscopy data 

demonstrated that the microvesicles and the exosome differ in size and 

that the two had different effects on the virus under investigation. 
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